top of page


6. Jung, Y.†; Lee, Y.;† Shin, K.* Catalytic Synthesis of Carbonyl Compounds Using Acyl Fluorides, Carbamoyl Fluorides, and Fluoroformates: An Overview. Asian Journal of Organic Chemistry 2024, ASAP. († These authors contributed equally to this work.) 

Invited contribution to 'Early Career Researchers Joint Special Collection 2023/2024'

ajoc review TOC.png

5. Park, S. H.†; Bae, G.†; Choi, A.; Shin, S.; Shin, K.*.; Choi, C. H*.; Kim, H.*  Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. Journal of the American Chemical Society 2023, 145, 15360-15369. († These authors contributed equally to this work.) 

highlighted in 'OPR&D' (link)


4. Mandal, A; Jang, J.; Yang, B.; Kim, H.*; Shin, K.*  Palladium-Catalyzed Electrooxidative Hydrofluorination of Aryl-Substituted Alkenes with Nucleophilic Fluorine Source. Organic Letters 2023, 25, 195-199. (Chemrxiv Preprint: 10.26434/chemrxiv-2022-z63ld)

highlighted in 'Organic Chemistry Portal' (link)


3. Dong, Y.; Shin, K.; Mai, B. K.; Liu, P.*; Buchwald, S. L.* Copper Hydride-Catalyzed Enantioselective Olefin Hydromethylation. Journal of the American Chemical Society 2022, 144, 16303-16309. (Chemrxiv Preprint: 10.26434/chemrxiv-2022-s3n7v)


2. Kim, J.†; Jang, J.†; Lee, Y.; Shin, K.* Ligand-Free NiH-Catalyzed Hydroacylation of Aryl Alkenes with Aroyl Fluorides. Organic Letters 2022, 24, 5412-5416. († These authors contributed equally to this work.) 

highlighted in 'Organic Chemistry Portal' (link)

Hydroacylation - TOC.emf.jpg

1. Park, S. H.; Jang, J.; Shin, K.*; Kim, H.* Electrocatalytic Radical-Polar Crossover Hydroetherification of Alkenes with Phenols. ACS Catalysis 2022, 12, 10572-10580. (ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-9pjmw)


Prior to SKKU

16. Li, C.†; Shin, K.†; Liu, R. Y.; Buchwald, S. L.* Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles. Angew. Chem., Int. Ed. 2019, 58, 17074-17080. († These authors contributed equally to this work.) <link>

15. Kim, J. †; Shin, K. †; Jin, S.; Kim, D.; Chang, S.* Oxidatively Induced Reductive Elimination: Exploring the Scope and Catalyst Systems with Ir, Rh, and Ru Complexes. J. Am. Chem. Soc. 2019, 141, 4137-4146. († These authors contributed equally to this work.)  <link>

14. Shin, K.; Park, Y.; Baik, M.-H.*; Chang, S.* Iridium-Catalysed Arylation of C-H Bonds Enabled by Oxidatively Induced Reductive Elimination. Nat. Chem. 2018, 10, 218-224. <link>

13. Shin, K.†; Joung, S.†; Kim, Y.; Chang, S.* Selective Synthesis of Silacycles by Borane-Catalyzed Domino-Hydrosilylation of Proximal Unsaturated Bonds: Tunable Approach to 1,n-Diols. Adv. Synth. Catal. 2017, 359, 3428-3436. († These authors contributed equally to this work.) <link>

12. Shin, K.; Park, S.-W.; Chang, S.* Cp*Ir(III)-Catalyzed Mild and Broad C-H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach. J. Am. Chem. Soc. 2015, 137, 8584-8592. <link>

11. Kim, J.; Shin, K.; Chang, S.* Rh(III)-and Ir(III)-Catalyzed Direct C-H Bond Transformations to Carbon-Heteroatom Bonds. Top. Organomet. Chem. 2015, 55, 29-51. <link>

10. Shin, K.; Kim, H.; Chang, S.* Transition Metal-Catalyzed C-N Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C-H Amination. Acc. Chem. Res. 2015, 48, 1040-1052. <link>

9. Shin, K.; Chang, S.* Iridium(III)-Catalyzed Direct C-7 Amination of Indolines with Organic Azides. J. Org. Chem. 2014, 79, 12197-12204. <link>

8. Kim, H.; Shin, K.; Chang, S.* Iridium-Catalyzed C-H Amination with Anilines at Room Temperature: Compatibility of Iridacycles with External Oxidants. J. Am. Chem. Soc. 2014, 136, 5904-5907. <link>

7. Li, B.; Lee, S.; Shin, K.; Chang, S.* Chelation-Assisted Hydroesterification of Alkenes: New Ruthenium Catalyst Systems and Ligand Effects. Org. Lett. 2014, 16, 2010-2013. <link>

6. Shin, K.; Ryu, J.; Chang, S.* Orthogonal Reactivity of Acyl Azides in C-H Activation: Dichotomy Between C-C and C-N Amidations Based on Catalyst Systems. Org. Lett. 2014, 16, 2022-2025. <link>

5. Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S.* Mechanistic Studies of the Rhodium-Catalyzed Direct C-H Amination Reaction Using Azides as the Nitrogen Source. J. Am. Chem. Soc. 2014, 136, 2492-2502. <link>

4. Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S.* Ir(III)-Catalyzed Mild C-H Amidation of Arenes and Alkenes: An Efficient Usage of Acyl Azides as the Nitrogen Source. J. Am. Chem. Soc. 2013, 135, 12861-12868 <link>

3. Shin, K.; Baek, Y.; Chang, S.* Direct C-H Amination of Arenes with Alkyl Azides under Rhodium Catalysis. Angew. Chem., Int. Ed. 2013, 52, 8031-8036. <link>

2. Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S.* Rhodium-Catalyzed Direct C-H Amination of Benzamides with Aryl Azides: A Synthetic Route to Diarylamines. Angew. Chem., Int. Ed. 2012, 51, 9904-9908. <link>

1. Kim, J.; Choi, J.; Shin, K.; Chang, S.* Copper-Mediated Sequential Cyanation of Aryl C-B and Arene C-H Bonds Using Ammonium Iodide and DMF. J. Am. Chem. Soc. 2012, 134, 2528-2531. <link>

bottom of page